Widest Paths and Global Propagation in Bounded Value Iteration for Stochastic Games

07/15/2020 ∙ by Kittiphon Phalakarn, et al. ∙ 0

Solving stochastic games with the reachability objective is a fundamental problem, especially in quantitative verification and synthesis. For this purpose, bounded value iteration (BVI) attracts attention as an efficient iterative method. However, BVI's performance is often impeded by costly end component (EC) computation that is needed to ensure convergence. Our contribution is a novel BVI algorithm that conducts, in addition to local propagation by the Bellman update that is typical of BVI, global propagation of upper bounds that is not hindered by ECs. To conduct global propagation in a computationally tractable manner, we construct a weighted graph and solve the widest path problem in it. Our experiments show the algorithm's performance advantage over the previous BVI algorithms that rely on EC computation.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.