"Why Would I Trust Your Numbers?" On the Explainability of Expected Values in Soccer

05/27/2021 ∙ by Jan Van Haaren, et al. ∙ 0

In recent years, many different approaches have been proposed to quantify the performances of soccer players. Since player performances are challenging to quantify directly due to the low-scoring nature of soccer, most approaches estimate the expected impact of the players' on-the-ball actions on the scoreline. While effective, these approaches are yet to be widely embraced by soccer practitioners. The soccer analytics community has primarily focused on improving the accuracy of the models, while the explainability of the produced metrics is often much more important to practitioners. To help bridge the gap between scientists and practitioners, we introduce an explainable Generalized Additive Model that estimates the expected value for shots. Unlike existing models, our model leverages features corresponding to widespread soccer concepts. To this end, we represent the locations of shots by fuzzily assigning the shots to designated zones on the pitch that practitioners are familiar with. Our experimental evaluation shows that our model is as accurate as existing models, while being easier to explain to soccer practitioners.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.