Why Normalizing Flows Fail to Detect Out-of-Distribution Data

06/15/2020 ∙ by Polina Kirichenko, et al. ∙ 13

Detecting out-of-distribution (OOD) data is crucial for robust machine learning systems. Normalizing flows are flexible deep generative models that often surprisingly fail to distinguish between in- and out-of-distribution data: a flow trained on pictures of clothing assigns higher likelihood to handwritten digits. We investigate why normalizing flows perform poorly for OOD detection. We demonstrate that flows learn local pixel correlations and generic image-to-latent-space transformations which are not specific to the target image dataset. We show that by modifying the architecture of flow coupling layers we can bias the flow towards learning the semantic structure of the target data, improving OOD detection. Our investigation reveals that properties that enable flows to generate high-fidelity images can have a detrimental effect on OOD detection.



There are no comments yet.


page 20

page 21

page 23

page 24

page 26

Code Repositories


Glow model implementation

view repo


Deep Generative Models that I have implemented, trained and experimented with.

view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.