When Spectral Modeling Meets Convolutional Networks: A Method for Discovering Reionization-era Lensed Quasars in Multi-band Imaging Data

11/26/2022
by   Irham Taufik Andika, et al.
0

Over the last two decades, around three hundred quasars have been discovered at z≳6, yet only one was identified as being strong-gravitationally lensed. We explore a new approach, enlarging the permitted spectral parameter space while introducing a new spatial geometry veto criterion, implemented via image-based deep learning. We made the first application of this approach in a systematic search for reionization-era lensed quasars, using data from the Dark Energy Survey, the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey, and the Wide-field Infrared Survey Explorer. Our search method consists of two main parts: (i) pre-selection of the candidates based on their spectral energy distributions (SEDs) using catalog-level photometry and (ii) relative probabilities calculation of being a lens or some contaminant utilizing a convolutional neural network (CNN) classification. The training datasets are constructed by painting deflected point-source lights over actual galaxy images to generate realistic galaxy-quasar lens models, optimized to find systems with small image separations, i.e., Einstein radii of θ_E≤ 1 arcsec. Visual inspection is then performed for sources with CNN scores of P_lens > 0.1, which led us to obtain 36 newly-selected lens candidates, waiting for spectroscopic confirmation. These findings show that automated SED modeling and deep learning pipelines, supported by modest human input, are a promising route for detecting strong lenses from large catalogs that can overcome the veto limitations of primarily dropout-based SED selection approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro