When is multitask learning effective? Semantic sequence prediction under varying data conditions

12/07/2016
by   Héctor Martínez Alonso, et al.
0

Multitask learning has been applied successfully to a range of tasks, mostly morphosyntactic. However, little is known on when MTL works and whether there are data characteristics that help to determine its success. In this paper we evaluate a range of semantic sequence labeling tasks in a MTL setup. We examine different auxiliary tasks, amongst which a novel setup, and correlate their impact to data-dependent conditions. Our results show that MTL is not always effective, significant improvements are obtained only for 1 out of 5 tasks. When successful, auxiliary tasks with compact and more uniform label distributions are preferable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro