When does the Lanczos algorithm compute exactly?
In theory, the Lanczos algorithm generates an orthogonal basis of the corresponding Krylov subspace. However, in finite precision arithmetic, the orthogonality and linear independence of the computed Lanczos vectors is usually lost quickly. In this paper we study a class of matrices and starting vectors having a special nonzero structure that guarantees exact computations of the Lanczos algorithm whenever floating point arithmetic satisfying the IEEE 754 standard is used. Analogous results are formulated also for a variant of the conjugate gradient method that produces then almost exact results. The results are extended to the Arnoldi algorithm, the nonsymmetric Lanczos algorithm, the Golub-Kahan bidiagonalization, the block-Lanczos algorithm and their counterparts for solving linear systems.
READ FULL TEXT