When Automatic Voice Disguise Meets Automatic Speaker Verification

09/15/2020
by   Linlin Zheng, et al.
0

The technique of transforming voices in order to hide the real identity of a speaker is called voice disguise, among which automatic voice disguise (AVD) by modifying the spectral and temporal characteristics of voices with miscellaneous algorithms are easily conducted with softwares accessible to the public. AVD has posed great threat to both human listening and automatic speaker verification (ASV). In this paper, we have found that ASV is not only a victim of AVD but could be a tool to beat some simple types of AVD. Firstly, three types of AVD, pitch scaling, vocal tract length normalization (VTLN) and voice conversion (VC), are introduced as representative methods. State-of-the-art ASV methods are subsequently utilized to objectively evaluate the impact of AVD on ASV by equal error rates (EER). Moreover, an approach to restore disguised voice to its original version is proposed by minimizing a function of ASV scores w.r.t. restoration parameters. Experiments are then conducted on disguised voices from Voxceleb, a dataset recorded in real-world noisy scenario. The results have shown that, for the voice disguise by pitch scaling, the proposed approach obtains an EER around 7 EER of a recently proposed baseline using the ratio of fundamental frequencies. The proposed approach generalizes well to restore the disguise with nonlinear frequency warping in VTLN by reducing its EER from 34.3 is difficult to restore the source speakers in VC by our approach, where more complex forms of restoration functions or other paralinguistic cues might be necessary to restore the nonlinear transform in VC. Finally, contrastive visualization on ASV features with and without restoration illustrate the role of the proposed approach in an intuitive way.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset