When Artificial Parameter Evolution Gets Real: Particle Filtering for Time-Varying Parameter Estimation in Deterministic Dynamical Systems

03/31/2022
by   Andrea Arnold, et al.
0

Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e., additive vs. multiplicative).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset