When Are Linear Stochastic Bandits Attackable?
We study adversarial attacks on linear stochastic bandits, a sequential decision making problem with many important applications in recommender systems, online advertising, medical treatment, and etc. By manipulating the rewards, an adversary aims to control the behaviour of the bandit algorithm. Perhaps surprisingly, we first show that some attack goals can never be achieved. This is in sharp contrast to context-free stochastic bandits, and is intrinsically due to the correlation among arms in linear stochastic bandits. Motivated by this observation, this paper studies the attackability of a k-armed linear bandit environment. We first provide a full necessity and sufficiency characterization of attackability based on the geometry of the context vectors. We then propose a two-stage attack method against LinUCB and Robust Phase Elimination. The method first asserts whether the current environment is attackable, and if Yes, modifies the rewards to force the algorithm to pull a target arm linear times using only a sublinear cost. Numerical experiments further validate the effectiveness and cost-efficiency of the proposed method.
READ FULL TEXT