"What Are You Trying to Do?" Semantic Typing of Event Processes

10/13/2020 ∙ by Muhao Chen, et al. ∙ 0

This paper studies a new cognitively motivated semantic typing task, multi-axis event process typing, that, given an event process, attempts to infer free-form type labels describing (i) the type of action made by the process and (ii) the type of object the process seeks to affect. This task is inspired by computational and cognitive studies of event understanding, which suggest that understanding processes of events is often directed by recognizing the goals, plans or intentions of the protagonist(s). We develop a large dataset containing over 60k event processes, featuring ultra fine-grained typing on both the action and object type axes with very large (10^3∼ 10^4) label vocabularies. We then propose a hybrid learning framework, P2GT, which addresses the challenging typing problem with indirect supervision from glosses1and a joint learning-to-rank framework. As our experiments indicate, P2GT supports identifying the intent of processes, as well as the fine semantic type of the affected object. It also demonstrates the capability of handling few-shot cases, and strong generalizability on out-of-domain event processes.



There are no comments yet.


page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.