Well-posedness of weak solution for a nonlinear poroelasticity model
In this paper, we study the existence and uniqueness of weak solution of a nonlinear poroelasticity model. To better describe the proccess of deformation and diffusion underlying in the original model, we firstly reformulate the nonlinear poroelasticity by a multiphysics approach. Then, we adopt the similar technique of proving the well-posedness of nonlinear Stokes equations to prove the existence and uniqueness of weak solution of a nonlinear poroelasticity model. And we strictly prove the growth, coercivity and monotonicity of the nonlinear stress-strain relation, give the energy estimates and use Schauder's fixed point theorem to show the existence and uniqueness of weak solution of the nonlinear poroelasticity model.
READ FULL TEXT