Weighted Orthogonal Components Regression Analysis

09/13/2017
by   Xiaogang Su, et al.
0

In the multiple linear regression setting, we propose a general framework, termed weighted orthogonal components regression (WOCR), which encompasses many known methods as special cases, including ridge regression and principal components regression. WOCR makes use of the monotonicity inherent in orthogonal components to parameterize the weight function. The formulation allows for efficient determination of tuning parameters and hence is computationally advantageous. Moreover, WOCR offers insights for deriving new better variants. Specifically, we advocate weighting components based on their correlations with the response, which leads to enhanced predictive performance. Both simulated studies and real data examples are provided to assess and illustrate the advantages of the proposed methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset