Web spam classification using supervised artificial neural network algorithms

02/12/2015
by   Ashish Chandra, et al.
0

Due to the rapid growth in technology employed by the spammers, there is a need of classifiers that are more efficient, generic and highly adaptive. Neural Network based technologies have high ability of adaption as well as generalization. As per our knowledge, very little work has been done in this field using neural network. We present this paper to fill this gap. This paper evaluates performance of three supervised learning algorithms of artificial neural network by creating classifiers for the complex problem of latest web spam pattern classification. These algorithms are Conjugate Gradient algorithm, Resilient Backpropagation learning, and Levenberg-Marquardt algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro