Weakly-Supervised Action Localization with Expectation-Maximization Multi-Instance Learning
Weakly-supervised action localization problem requires training a model to localize the action segments in the video given only video level action label. It can be solved under the Multiple Instance Learning (MIL) framework, where a bag (video) contains multiple instances (action segments). Since only the bag's label is known, the main challenge is to assign which key instances within the bag trigger the bag's label. Most previous models use an attention-based approach. These models use attention to generate the bag's representation from instances and then train it via bag's classification. In this work, we explicitly model the key instances assignment as a hidden variable and adopt an Expectation-Maximization framework. We derive two pseudo-label generation schemes to model the E and M process and iteratively optimize the likelihood lower bound. We also show that previous attention-based models implicitly violate the MIL assumptions that instances in negative bags should be uniformly negative. In comparison, Our EM-MIL approach more accurately models these assumptions. Our model achieves state-of-the-art performance on two standard benchmarks, THUMOS14 and ActivityNet1.2, and shows the superiority of detecting relative complete action boundary in videos containing multiple actions.
READ FULL TEXT