Weak-Instrument Robust Tests in Two-Sample Summary-Data Mendelian Randomization

09/16/2019
by   Sheng Wang, et al.
0

Mendelian randomization (MR) is a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with two-sample summary-data MR being the most popular due to privacy. Unfortunately, many MR methods for two-sample summary data are not robust to weak instruments, a common phenomena with genetic instruments; many of these methods are biased and no existing MR method has Type I error control under weak instruments. In this work, we propose test statistics that are robust to weak instruments by extending Anderson-Rubin, Kleibergen, and conditional likelihood ratio tests in econometrics to the two-sample summary data setting. We conclude with a simulation and an empirical study and show that the proposed tests control size and have better power than current methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset