Wavelet Feature Maps Compression for Image-to-Image CNNs

05/24/2022
by   Shahaf E. Finder, et al.
0

Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC) – a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment on various tasks, that benefit from high-resolution input, and by combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset