Wavelet Classification for Over-the-Air Non-Orthogonal Waveforms

06/21/2020
by   Tongyang Xu, et al.
0

Non-cooperative communications using non-orthogonal multicarrier signals are challenging since self-created inter carrier interference (ICI) exists, which would prevent successful signal classification. Deep learning (DL) can deal with the classification task without domain-knowledge at the cost of training complexity since neural network hyperparameters have to be extensively tuned. Previous work showed that a tremendously trained convolutional neural network (CNN) classifier can efficiently identify feature-diversity dominant signals while it failed when feature-similarity dominates. Therefore, a pre-processing strategy, which can amplify signal feature diversity is of great importance. This work applies single-level wavelet transform to manually extract time-frequency features from non-orthogonal signals. Composite statistical features are investigated and the wavelet enabled two-dimensional time-frequency feature grid is further simplified into a one-dimensional feature vector via proper statistical transform. The dimensionality reduced features are fed to an error-correcting output codes (ECOC) model, consisting of multiple binary support vector machine (SVM) learners, for multiclass signal classification. Low-cost experiments reveal 100 feature-diversity dominant signals and 90 signals, which is nearly 28 classification results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro