Wav2vec-S: Semi-Supervised Pre-Training for Speech Recognition
Self-supervised pre-training has dramatically improved the performance of automatic speech recognition (ASR). However, most existing self-supervised pre-training approaches are task-agnostic, i.e., could be applied to various downstream tasks. And there is a gap between the task-agnostic pre-training and the task-specific downstream fine-tuning, which may degrade the downstream performance. In this work, we propose a novel pre-training paradigm called wav2vec-S, where we use task-specific semi-supervised pre-training to bridge this gap. Specifically, the semi-supervised pre-training is conducted on the basis of self-supervised pre-training such as wav2vec 2.0. Experiments on ASR show that compared to wav2vec 2.0, wav2vec-S only requires marginal increment of pre-training time but could significantly improve ASR performance on in-domain, cross-domain and cross-lingual datasets. The average relative WER reductions are 26.3
READ FULL TEXT