Watchlist Risk Assessment using Multiparametric Cost and Relative Entropy

07/22/2020
by   K. Lai, et al.
0

This paper addresses the facial biometric-enabled watchlist technology in which risk detectors are mandatory mechanisms for early detection of threats, as well as for avoiding offense to innocent travelers. We propose a multiparametric cost assessment and relative entropy measures as risk detectors. We experimentally demonstrate the effects of mis-identification and impersonation under various watchlist screening scenarios and constraints. The key contributions of this paper are the novel techniques for design and analysis of the biometric-enabled watchlist and the supporting infrastructure, as well as measuring the impersonation impact on e-border performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro