Walker-Independent Features for Gait Recognition from Motion Capture Data

09/22/2016
by   Michal Balazia, et al.
0

MoCap-based human identification, as a pattern recognition discipline, can be optimized using a machine learning approach. Yet in some applications such as video surveillance new identities can appear on the fly and labeled data for all encountered people may not always be available. This work introduces the concept of learning walker-independent gait features directly from raw joint coordinates by a modification of the Fisher Linear Discriminant Analysis with Maximum Margin Criterion. Our new approach shows not only that these features can discriminate different people than who they are learned on, but also that the number of learning identities can be much smaller than the number of walkers encountered in the real operation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset