Walk refinement, walk logic, and the iteration number of the Weisfeiler-Leman algorithm

05/08/2019
by   Moritz Lichter, et al.
0

We show that the 2-dimensional Weisfeiler-Leman algorithm stabilizes n-vertex graphs after at most O(n log n) iterations. This implies that if such graphs are distinguishable in 3-variable first order logic with counting, then they can also be distinguished in this logic by a formula of quantifier depth at most O(n log n). For this we exploit a new refinement based on counting walks and argue that its iteration number differs from the classic Weisfeiler-Leman refinement by at most a logarithmic factor. We then prove matching linear upper and lower bounds on the number of iterations of the walk refinement. This is achieved with an algebraic approach by exploiting properties of semisimple matrix algebras. We also define a walk logic and a bijective walk pebble game that precisely correspond to the new walk refinement.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
01/30/2023

The Iteration Number of the Weisfeiler-Leman Algorithm

We prove new upper and lower bounds on the number of iterations the k-di...
research
05/20/2020

The Iteration Number of Colour Refinement

The Colour Refinement procedure and its generalisation to higher dimensi...
research
04/25/2023

Simulating Logspace-Recursion with Logarithmic Quantifier Depth

The fixed-point logic LREC= was developed by Grohe et al. (CSL 2011) in ...
research
06/30/2021

Logarithmic Weisfeiler-Leman Identifies All Planar Graphs

The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial proced...
research
03/29/2019

Color Refinement, Homomorphisms, and Hypergraphs

Recent results show that the structural similarity of graphs can be char...
research
03/20/2023

Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation

We introduce the 2-sorted counting logic GC^k that expresses properties ...
research
12/13/2021

On Homotopy of Walks and Spherical Maps in Homotopy Type Theory

We work with combinatorial maps to represent graph embeddings into surfa...

Please sign up or login with your details

Forgot password? Click here to reset