Walk Message Passing Neural Networks and Second-Order Graph Neural Networks

06/16/2020
by   Floris Geerts, et al.
0

The expressive power of message passing neural networks (MPNNs) is known to match the expressive power of the 1-dimensional Weisfeiler-Leman graph (1-WL) isomorphism test. To boost the expressive power of MPNNs, a number of graph neural network architectures have recently been proposed based on higher-dimensional Weisfeiler-Leman tests. In this paper we consider the two-dimensional (2-WL) test and introduce a new type of MPNNs, referred to as ℓ-walk MPNNs, which aggregate features along walks of length ℓ between vertices. We show that 2-walk MPNNs match 2-WL in expressive power. More generally, ℓ-walk MPNNs, for any ℓ≥ 2, are shown to match the expressive power of the recently introduced ℓ-walk refinement procedure (W[ℓ]). Based on a correspondence between 2-WL and W[ℓ], we observe that ℓ-walk MPNNs and 2-walk MPNNs have the same expressive power, i.e., they can distinguish the same pairs of graphs, but ℓ-walk MPNNs can possibly distinguish pairs of graphs faster than 2-walk MPNNs. When it comes to concrete learnable graph neural network (GNN) formalisms that match 2-WL or W[ℓ] in expressive power, we consider second-order graph neural networks that allow for non-linear layers. In particular, to match W[ℓ] in expressive power, we allow ℓ-1 matrix multiplications in each layer. We propose different versions of second-order GNNs depending on the type of features (i.e., coming from a countable set, or coming from an uncountable set) as this affects the number of dimensions needed to represent the features. Our results indicate that increasing non-linearity in layers by means of allowing multiple matrix multiplications does not increase expressive power. At the very best, it results in a faster distinction of input graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro