Vowel-based Meeteilon dialect identification using a Random Forest classifier
This paper presents a vowel-based dialect identification system for Meeteilon. For this work, a vowel dataset is created by using Meeteilon Speech Corpora available at Linguistic Data Consortium for Indian Languages (LDC-IL). Spectral features such as formant frequencies (F1, F1 and F3) and prosodic features such as pitch (F0), energy, intensity and segment duration values are extracted from monophthong vowel sounds. Random forest classifier, a decision tree-based ensemble algorithm is used for classification of three major dialects of Meeteilon namely, Imphal, Kakching and Sekmai. Model has shown an average dialect identification performance in terms of accuracy of around 61.57 in Meeteilon dialect classification.
READ FULL TEXT