Voting-Based Multi-Agent Reinforcement Learning
The recent success of single-agent reinforcement learning (RL) encourages the exploration of multi-agent reinforcement learning (MARL), which is more challenging due to the interactions among different agents. In this paper, we consider a voting-based MARL problem, in which the agents vote to make group decisions and the goal is to maximize the globally averaged returns. To this end, we formulate the MARL problem based on the linear programming form of the policy optimization problem and propose a distributed primal-dual algorithm to obtain the optimal solution. We also propose a voting mechanism through which the distributed learning achieves the same sub-linear convergence rate as centralized learning. In other words, the distributed decision making does not slow down the global consensus to optimal. We also verify the convergence of our proposed algorithm with numerical simulations and conduct case studies in practical multi-agent systems.
READ FULL TEXT