Vortex Filament Equation for a regular polygon in the hyperbolic plane

07/09/2020
by   Francisco de la Hoz, et al.
0

The aim of this article is twofold. First, we show the evolution of the vortex filament equation (VFE) for a regular planar polygon in the hyperbolic space. Unlike in the Euclidean space, the planar polygon is open and both of its ends grow exponentially, which makes the problem more challenging from a numerical point of view. However, with fixed boundary conditions, a finite difference scheme and a fourth-order Runge–Kutta method in time, we show that the numerical solution is in complete agreement with the one obtained from algebraic techniques. Second, as in the Euclidean case, we claim that, at infinitesimal times, the evolution of VFE for a planar polygon as the initial datum can be described as a superposition of several one-corner initial data. As a consequence, not only can we compute the speed of the center of mass of the planar polygon, but the relationship also allows us to compare the time evolution of any of its corners with that in the Euclidean case.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
10/22/2020

On the Schrödinger map for regular helical polygons in the hyperbolic space

The main purpose is to describe the evolution of = ∧_- , with (s,0) a re...
research
05/01/2021

Asymptotic behavior of fronts and pulses of the bidomain model

The bidomain model is the standard model for cardiac electrophysiology. ...
research
09/03/2019

On the Evolution of the Vortex Filament Equation for regular M-polygons with nonzero torsion

In this paper, we consider the evolution of the Vortex Filament equation...
research
04/27/2022

Discrete hyperbolic curvature flow in the plane

Hyperbolic curvature flow is a geometric evolution equation that in the ...
research
10/11/2017

Solutions of Quadratic First-Order ODEs applied to Computer Vision Problems

The article proves the existence of a maximum of two possible solutions ...
research
11/23/2018

Rank-frequency distribution of natural languages: a difference of probabilities approach

The time variation of the rank k of words for six Indo-European language...

Please sign up or login with your details

Forgot password? Click here to reset