Volume-based Semantic Labeling with Signed Distance Functions

11/13/2015
by   Tommaso Cavallari, et al.
0

Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to provide a semantically labeled dense reconstruction of the environment from a stream of RGB-D images. We validate our proposal using a publicly available semantically annotated RGB-D dataset and a) employing ground truth labels, b) corrupting such annotations with synthetic noise, c) deploying a state of the art semantic segmentation algorithm based on Convolutional Neural Networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset