Visual-Guided Mesh Repair
Mesh repair is a long-standing challenge in computer graphics and related fields. Converting defective meshes into watertight manifold meshes can greatly benefit downstream applications such as geometric processing, simulation, fabrication, learning, and synthesis. In this work, we first introduce three visual measures for visibility, orientation, and openness, based on ray-tracing. We then present a novel mesh repair framework that incorporates visual measures with several critical steps, i.e., open surface closing, face reorientation, and global optimization, to effectively repair defective meshes, including gaps, holes, self-intersections, degenerate elements, and inconsistent orientations. Our method reduces unnecessary mesh complexity without compromising geometric accuracy or visual quality while preserving input attributes such as UV coordinates for rendering. We evaluate our approach on hundreds of models randomly selected from ShapeNet and Thingi10K, demonstrating its effectiveness and robustness compared to existing approaches.
READ FULL TEXT