Visibility Interpolation in Solar Hard X-ray Imaging: Application to RHESSI and STIX

12/27/2020
by   Emma Perracchione, et al.
3

Space telescopes for solar hard X-ray imaging provide observations made of sampled Fourier components of the incoming photon flux. The aim of this study is to design an image reconstruction method relying on enhanced visibility interpolation in the Fourier domain. interpolation-based method is applied on synthetic visibilities generated by means of the simulation software implemented within the framework of the Spectrometer/Telescope for Imaging X-rays (STIX) mission on board Solar Orbiter. An application to experimental visibilities observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is also considered. In order to interpolate these visibility data we have utilized an approach based on Variably Scaled Kernels (VSKs), which are able to realize feature augmentation by exploiting prior information on the flaring source and which are used here, for the first time, for image reconstruction purposes. results heading (mandatory) When compared to an interpolation-based reconstruction algorithm previously introduced for RHESSI, VSKs offer significantly better performances, particularly in the case of STIX imaging, which is characterized by a notably sparse sampling of the Fourier domain. In the case of RHESSI data, this novel approach is particularly reliable when either the flaring sources are characterized by narrow, ribbon-like shapes or high-resolution detectors are utilized for observations. (optional), leave it empty if necessary The use of VSKs for interpolating hard X-ray visibilities allows a notable image reconstruction accuracy when the information on the flaring source is encoded by a small set of scattered Fourier data and when the visibility surface is affected by significant oscillations in the frequency domain.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 7

page 10

page 12

page 13

02/18/2020

MEM_GE: a new maximum entropy method for image reconstruction from solar X-ray visibilities

Maximum Entropy is an image reconstruction method conceived to image a s...
08/10/2021

Imaging from STIX visibility amplitudes

Aims: To provide the first demonstration of STIX Fourier-transform X-ray...
08/13/2017

Solar hard X-ray imaging by means of Compressed Sensing and Finite Isotropic Wavelet Transform

This paper shows that compressed sensing realized by means of regularize...
01/27/2021

Automatic Detection of Occulted Hard X-ray Flares Using Deep-Learning Methods

We present a concept for a machine-learning classification of hard X-ray...
01/27/2018

Identification of multiple hard X-ray sources in solar flares: A Bayesian analysis of the February 20 2002 event

Hard X-ray emission in solar flares is typically characterized by a numb...
12/30/2014

Holistic random encoding for imaging through multimode fibers

The input numerical aperture (NA) of multimode fiber (MMF) can be effect...
10/14/2021

VLBInet: Radio Interferometry Data Classification for EHT with Neural Networks

The Event Horizon Telescope (EHT) recently released the first horizon-sc...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.