View-invariant Deep Architecture for Human Action Recognition using late fusion

12/08/2019 ∙ by Chhavi Dhiman, et al. ∙ 14

Human action Recognition for unknown views is a challenging task. We propose a view-invariant deep human action recognition framework, which is a novel integration of two important action cues: motion and shape temporal dynamics (STD). The motion stream encapsulates the motion content of action as RGB Dynamic Images (RGB-DIs) which are processed by the fine-tuned InceptionV3 model. The STD stream learns long-term view-invariant shape dynamics of action using human pose model (HPM) based view-invariant features mined from structural similarity index matrix (SSIM) based key depth human pose frames. To predict the score of the test sample, three types of late fusion (maximum, average and product) techniques are applied on individual stream scores. To validate the performance of the proposed novel framework the experiments are performed using both cross subject and cross-view validation schemes on three publically available benchmarks- NUCLA multi-view dataset, UWA3D-II Activity dataset and NTU RGB-D Activity dataset. Our algorithm outperforms with existing state-of-the-arts significantly that is reported in terms of accuracy, receiver operating characteristic (ROC) curve and area under the curve (AUC).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 3

page 4

page 5

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.