Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation

03/12/2018
by   Xiaoxiao Li, et al.
0

The problem of video object segmentation can become extremely challenging when multiple instances co-exist. While each instance may exhibit large scale and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by their temporal continuity, yet able to re-identify them when they re-appear after a prolonged occlusion. We combine both temporal propagation and re-identification functionalities into a single framework that can be trained end-to-end. In particular, we present a re-identification module with template expansion to retrieve missing objects despite their large appearance changes. In addition, we contribute a new attention-based recurrent mask propagation approach that is robust to distractors not belonging to the target segment. Our approach achieves a new state-of-the-art global mean (Region Jaccard and Boundary F measure) of 68.2 on the challenging DAVIS 2017 benchmark (test-dev set), outperforming the winning solution which achieves a global mean of 66.1 on the same partition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro