Video Captioning with Transferred Semantic Attributes

11/23/2016
by   Yingwei Pan, et al.
0

Automatically generating natural language descriptions of videos plays a fundamental challenge for computer vision community. Most recent progress in this problem has been achieved through employing 2-D and/or 3-D Convolutional Neural Networks (CNN) to encode video content and Recurrent Neural Networks (RNN) to decode a sentence. In this paper, we present Long Short-Term Memory with Transferred Semantic Attributes (LSTM-TSA)---a novel deep architecture that incorporates the transferred semantic attributes learnt from images and videos into the CNN plus RNN framework, by training them in an end-to-end manner. The design of LSTM-TSA is highly inspired by the facts that 1) semantic attributes play a significant contribution to captioning, and 2) images and videos carry complementary semantics and thus can reinforce each other for captioning. To boost video captioning, we propose a novel transfer unit to model the mutually correlated attributes learnt from images and videos. Extensive experiments are conducted on three public datasets, i.e., MSVD, M-VAD and MPII-MD. Our proposed LSTM-TSA achieves to-date the best published performance in sentence generation on MSVD: 52.8 and CIDEr-D. Superior results when compared to state-of-the-art methods are also reported on M-VAD and MPII-MD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro