Very High-Order A-stable Stiffly Accurate Diagonally Implicit Runge-Kutta Methods

11/26/2022
by   Yousef Alamri, et al.
0

A numerical search approach is used to design high-order diagonally implicit Runge-Kutta (DIRK) schemes suitable for stiff and oscillatory systems. We present new A-stable schemes of orders six (the highest order of previously designed DIRK schemes) up to eight. For each order, we include one scheme that is only A-stable as well as one that is stiffly accurate and therefore L-stable. The stiffly accurate schemes require more stages but can be expected to give better results for highly stiff problems and differential-algebraic equations. The development of eighth-order schemes requires the highly accurate numerical solution of a system of 200 equations in over 100 variables, which is accomplished via a combination of global and local optimization. The accuracy and stability of the schemes is analyzed and tested on diverse problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset