Verification and Validation of Log-Periodic Power Law Models

06/09/2021
by   Jarret Petrillo, et al.
0

We propose and implement a nonlinear Verification and Validation (V V) methodology to test two fitting procedures for the log-periodic power law model (LPPL), a model that has diverse applications across data analysis, but known estimation issues. Prior studies have focused on ex-post analyses of rare events: Earthquakes, glacial break-off events, and financial crashes. Or, on non-dynamical simulations such as additive noise or resampling. Our results reject an estimation scheme that pre-conditions observed data by fitting and removing an exponential trend. We validate a subordinated algorithm, and confirm that it passes Feigenbaum's criticism, which articulates a broad hurdle for ex-post statistical learning from rare events.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro