VAW-GAN for Disentanglement and Recomposition of Emotional Elements in Speech

11/03/2020 ∙ by Kun Zhou, et al. ∙ 0

Emotional voice conversion (EVC) aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. In this paper, we study the disentanglement and recomposition of emotional elements in speech through variational autoencoding Wasserstein generative adversarial network (VAW-GAN). We propose a speaker-dependent EVC framework based on VAW-GAN, that includes two VAW-GAN pipelines, one for spectrum conversion, and another for prosody conversion. We train a spectral encoder that disentangles emotion and prosody (F0) information from spectral features; we also train a prosodic encoder that disentangles emotion modulation of prosody (affective prosody) from linguistic prosody. At run-time, the decoder of spectral VAW-GAN is conditioned on the output of prosodic VAW-GAN. The vocoder takes the converted spectral and prosodic features to generate the target emotional speech. Experiments validate the effectiveness of our proposed method in both objective and subjective evaluations.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.