Variational Quantum Policy Gradients with an Application to Quantum Control

03/20/2022
by   André Sequeira, et al.
0

Quantum Machine Learning models are composed by Variational Quantum Circuits (VQCs) in a very natural way. There are already some empirical results proving that such models provide an advantage in supervised/unsupervised learning tasks. However, when applied to Reinforcement Learning (RL), less is known. In this work, we consider Policy Gradients using a hardware-efficient ansatz. We prove that the complexity of obtaining an ϵ-approximation of the gradient using quantum hardware scales only logarithmically with the number of parameters, considering the number of quantum circuits executions. We test the performance of such models in benchmarking environments and verify empirically that such quantum models outperform typical classical neural networks used in those environments, using a fraction of the number of parameters. Moreover, we propose the utilization of the Fisher Information spectrum to show that the quantum model is less prone to barren plateaus than its classical counterpart. As a different use case, we consider the application of such variational quantum models to the problem of quantum control and show its feasibility in the quantum-quantum domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset