Variational Laplace for Bayesian neural networks
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. Variational Laplace performs better on image classification tasks than MAP inference and far better than standard variational inference with stochastic sampling despite using the same mean-field Gaussian approximate posterior. The Variational Laplace objective is simple to evaluate, as it is (in essence) the log-likelihood, plus weight-decay, plus a squared-gradient regularizer. Finally, we emphasise care needed in benchmarking standard VI as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
READ FULL TEXT