Variational Inference MPC for Bayesian Model-based Reinforcement Learning

07/08/2019
by   Masashi Okada, et al.
6

In recent studies on model-based reinforcement learning (MBRL), incorporating uncertainty in forward dynamics is a state-of-the-art strategy to enhance learning performance, making MBRLs competitive to cutting-edge model free methods, especially in simulated robotics tasks. Probabilistic ensembles with trajectory sampling (PETS) is a leading type of MBRL, which employs Bayesian inference to dynamics modeling and model predictive control (MPC) with stochastic optimization via the cross entropy method (CEM). In this paper, we propose a novel extension to the uncertainty-aware MBRL. Our main contributions are twofold: Firstly, we introduce a variational inference MPC, which reformulates various stochastic methods, including CEM, in a Bayesian fashion. Secondly, we propose a novel instance of the framework, called probabilistic action ensembles with trajectory sampling (PaETS). As a result, our Bayesian MBRL can involve multimodal uncertainties both in dynamics and optimal trajectories. In comparison to PETS, our method consistently improves asymptotic performance on several challenging locomotion tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset