Variational Bayes method for ODE parameter estimation with application to time-varying SIR model for Covid-19 epidemic

11/19/2020
by   Hyunjoo Yang, et al.
0

Ordinary differential equation (ODE) is a mathematical model for dynamical systems. For its intuitive appeal to modelling, the ODE is used in many application areas such as climatology, bioinformatics, disease modelling and chemical engineering. Despite ODE's wide usage in modelling, there are difficulties in estimating ODE parameters from the data due to frequent absence of their analytic solutions. The ODE model typically requires enormous computing time and shows poor performance in estimation especially when the model has a lot of variables and parameters. This paper proposes a Bayesian ODE parameter estimating algorithm which is fast and accurate even for models with many parameters. The proposed method approximates an ODE model with a state-space model based on equations of a numeric solver. It allows fast estimation by avoiding computations of a whole numerical solution in the likelihood. The posterior is obtained by a variational Bayes method, more specifically, the approximate Riemannian conjugate gradient method <cit.>honkela2010approximate, which avoids samplings based on Markov chain Monte Carlo (MCMC). In simulation studies we compared the speed and performance of proposed method with existing methods. The proposed method showed the best performance in the reproduction of the true ODE curve with strong stability as well as the fastest computation, especially in a large model with more than 30 parameters. As a real-world data application a SIR model with time-varying parameters was fitted to the COVID-19 data. Taking advantage of our proposed algorithm, 30 parameters were adequately fitted for each country.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

04/07/2021

Laplace-aided variational inference for differential equation models

Ordinary differential equation (ODE) model whose regression curves are a...
08/03/2020

Adaptive Physics-Informed Neural Networks for Markov-Chain Monte Carlo

In this paper, we propose the Adaptive Physics-Informed Neural Networks ...
10/06/2019

Bayesian analysis of dynamic binary data: A simulation study and application to economic index SP

It is proposed in the literature that in some complicated problems maxim...
06/30/2020

On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective

Renewal processes are a popular approach used in modelling infectious di...
08/10/2020

Time Fused Coefficient SIR Model with Application to COVID-19 Epidemic in the United States

In this paper, we propose a Susceptible-Infected-Removal (SIR) model wit...
06/24/2020

Inference in Stochastic Epidemic Models via Multinomial Approximations

We introduce a new method for inference in stochastic epidemic models wh...
12/14/2020

Variational State and Parameter Estimation

This paper considers the problem of computing Bayesian estimates of both...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.