Variants of the Finite Element Method for the Parabolic Heat Equation: Comparative Numerical Study

05/24/2020
by   Ahmed A. Hamada, et al.
0

Different variants of the method of weighted residual finite element method are used to get a solution for the parabolic heat equation, which is considered to be the model equation for the steady state Navier-Stokes equations. Results show that the Collocation and the Least-Squares variants are more suitable for first order systems. Results also show that the Galerkin/Least-Squares method is more diffusive than other methods, and hence gives stable solutions for a wide range of Péclet numbers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro