Variable Selection in Restricted Linear Regression Models
The use of prior information in the linear regression is well known to provide more efficient estimators of regression coefficients. The methods of non-stochastic restricted regression estimation proposed by Theil and Goldberger (1961) are preferred when prior information is available. In this study, we will consider parameter estimation and the variable selection in non-stochastic restricted linear regression model, using least absolute shrinkage and selection operator (LASSO) method introduced by Tibshirani (1996). A small simulation study and real data example are provided to illustrate the performance of the proposed method for dealing with the variable selection and the parameter estimation in restricted linear regression models.
READ FULL TEXT