V2X Downlink Coverage Analysis with a Realistic Urban Vehicular Model

05/11/2018
by   Yae Jee Cho, et al.
0

As the realization of vehicular communication such as vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) is imperative for the autonomous driving cars, the understanding of realistic vehicle-to-everything (V2X) models is needed. While previous research has mostly targeted vehicular models in which vehicles are randomly distributed and the variable of carrier frequency was not considered, a more realistic analysis of the V2X model is proposed in this paper. We use a one-dimensional (1D) Poisson cluster process (PCP) to model a realistic scenario of vehicle distribution in a perpendicular cross line road urban area and compare the coverage results with the previous research that distributed vehicles randomly by Poisson Point Process (PPP). Moreover, we incorporate the effect of different carrier frequencies, mmWave and sub-6 GHz, to our analysis by altering the antenna radiation pattern accordingly. Results indicated that while the effect of clustering led to lower outage, using mmWave had even more significance in leading to lower outage. Moreover, line-of-sight (LoS) interference links are shown to be more dominant in lowering the outage than the non-line-of-sight (NLoS) links even though they are less in number. The analytical results give insight into designing and analyzing the urban V2X channels, and are verified by actual urban area three-dimensional (3D) ray-tracing simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset