Utilizing FastText for Venue Recommendation

05/14/2020
by   Makbule Gulcin Ozsoy, et al.
0

Venue recommendation systems model the past interactions (i.e., check-ins) of the users and recommend venues. Traditional recommendation systems employ collaborative filtering, content-based filtering or matrix factorization. Recently, vector space embedding and deep learning algorithms are also used for recommendation. In this work, I propose a method for recommending top-k venues by utilizing the sequentiality feature of check-ins and a recent vector space embedding method, namely the FastText. Our proposed method; forms groups of check-ins, learns the vector space representations of the venues and utilizes the learned embeddings to make venue recommendations. I measure the performance of the proposed method using a Foursquare check-in dataset.The results show that the proposed method performs better than the state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro