Utilising Visual Attention Cues for Vehicle Detection and Tracking

07/31/2020
by   Feiyan Hu, et al.
1

Advanced Driver-Assistance Systems (ADAS) have been attracting attention from many researchers. Vision-based sensors are the closest way to emulate human driver visual behavior while driving. In this paper, we explore possible ways to use visual attention (saliency) for object detection and tracking. We investigate: 1) How a visual attention map such as a subjectness attention or saliency map and an objectness attention map can facilitate region proposal generation in a 2-stage object detector; 2) How a visual attention map can be used for tracking multiple objects. We propose a neural network that can simultaneously detect objects as and generate objectness and subjectness maps to save computational power. We further exploit the visual attention map during tracking using a sequential Monte Carlo probability hypothesis density (PHD) filter. The experiments are conducted on KITTI and DETRAC datasets. The use of visual attention and hierarchical features has shown a considerable improvement of ≈8% in object detection which effectively increased tracking performance by ≈4% on KITTI dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset