DeepAI
Log In Sign Up

USTAR: Online Multimodal Embedding for Modeling User-Guided Spatiotemporal Activity

10/23/2019
by   Amila Silva, et al.
0

Building spatiotemporal activity models for people's activities in urban spaces is important for understanding the ever-increasing complexity of urban dynamics. With the emergence of Geo-Tagged Social Media (GTSM) records, previous studies demonstrate the potential of GTSM records for spatiotemporal activity modeling. State-of-the-art methods for this task embed different modalities (location, time, and text) of GTSM records into a single embedding space. However, they ignore Non-GeoTagged Social Media (NGTSM) records, which generally account for the majority of posts (e.g., more than 95% in Twitter), and could represent a great source of information to alleviate the sparsity of GTSM records. Furthermore, in the current spatiotemporal embedding techniques, less focus has been given to the users, who exhibit spatially motivated behaviors. To bridge this research gap, this work proposes USTAR, a novel online learning method for User-guided SpatioTemporal Activity Representation, which (1) embeds locations, time, and text along with users into the same embedding space to capture their correlations; (2) uses a novel collaborative filtering approach based on two different empirically studied user behaviors to incorporate both NGTSM and GTSM records in learning; and (3) introduces a novel sampling technique to learn spatiotemporal representations in an online fashion to accommodate recent information into the embedding space, while avoiding overfitting to recent records and frequently appearing units in social media streams. Our results show that USTAR substantially improves the state-of-the-art for region retrieval and keyword retrieval and its potential to be applied to other downstream applications such as local event detection.

READ FULL TEXT
11/28/2019

Macross: Urban Dynamics Modeling based on Metapath Guided Cross-Modal Embedding

As the ongoing rapid urbanization takes place with an ever-increasing sp...
05/17/2021

Learning User Embeddings from Temporal Social Media Data: A Survey

User-generated data on social media contain rich information about who w...
09/29/2016

ICE: Information Credibility Evaluation on Social Media via Representation Learning

With the rapid growth of social media, rumors are also spreading widely ...
05/17/2019

Deep Unified Multimodal Embeddings for Understanding both Content and Users in Social Media Networks

There has been an explosion of multimodal content generated on social me...
07/29/2022

SERCNN: Stacked Embedding Recurrent Convolutional Neural Network in Detecting Depression on Twitter

Conventional approaches to identify depression are not scalable, and the...
08/16/2022

An optimal sensors-based simulation method for spatiotemporal event detection

Human movements in urban areas are essential for understanding the human...
10/18/2016

Modeling the Dynamics of Online Learning Activity

People are increasingly relying on the Web and social media to find solu...