Using wavelets to analyze similarities in image datasets
Deep learning image classifiers usually rely on huge training sets and their training process can be described as learning the similarities and differences among training images. But, images in large training sets are not usually studied from this perspective and fine-level similarities and differences among images is usually overlooked. Some studies aim to identify the influential and redundant training images, but such methods require a model that is already trained on the entire training set. Here, we show that analyzing the contents of large training sets can provide valuable insights about the classification task at hand, prior to training a model on them. We use wavelet decomposition of images and other image processing tools to perform such analysis, with no need for a pre-trained model. This makes the analysis of training sets, straightforward and fast. We show that similar images in standard datasets (such as CIFAR) can be identified in a few seconds, a significant speed-up compared to alternative methods in the literature. We also show that similarities between training and testing images may explain the generalization of models and their mistakes. Finally, we investigate the similarities between images in relation to decision boundaries of a trained model.
READ FULL TEXT