Using Variational Inference and MapReduce to Scale Topic Modeling

07/19/2011
by   Ke Zhai, et al.
0

Latent Dirichlet Allocation (LDA) is a popular topic modeling technique for exploring document collections. Because of the increasing prevalence of large datasets, there is a need to improve the scalability of inference of LDA. In this paper, we propose a technique called MapReduce LDA (Mr. LDA) to accommodate very large corpus collections in the MapReduce framework. In contrast to other techniques to scale inference for LDA, which use Gibbs sampling, we use variational inference. Our solution efficiently distributes computation and is relatively simple to implement. More importantly, this variational implementation, unlike highly tuned and specialized implementations, is easily extensible. We demonstrate two extensions of the model possible with this scalable framework: informed priors to guide topic discovery and modeling topics from a multilingual corpus.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset