Using Multi-Label Classification for Improved Question Answering

10/24/2017 ∙ by Ricardo Usbeck, et al. ∙ 0

A plethora of diverse approaches for question answering over RDF data have been developed in recent years. While the accuracy of these systems has increased significantly over time, most systems still focus on particular types of questions or particular challenges in question answering. What is a curse for single systems is a blessing for the combination of these systems. We show in this paper how machine learning techniques can be applied to create a more accurate question answering metasystem by reusing existing systems. In particular, we develop a multi-label classification-based metasystem for question answering over 6 existing systems using an innovative set of 14 question features. The metasystem outperforms the best single system by 14 F-measure on the recent QALD-6 benchmark. Furthermore, we analyzed the influence and correlation of the underlying features on the metasystem quality.



There are no comments yet.


page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.