References
 [1] R. Feynman, The Character of Physical Law (MIT Press, Cambridge, 1965).
 [2] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning (MIT Press, Cambridge, 2016).
 [3] C.W.J. Granger, “Investigating Causal Relations by Econometric Methods and CrossSpectral Methods,” Econometrica 37, 424430 (1969).
 [4] M. Ding, Y. Chen. and S. L. Bressler, “Granger Causality: Basic Theory and Applications to Neuroscience,” in Handbook of Time Series Analysis, pp. 437460 (WileyVCH, 2006).
 [5] C. Sima, J. Hua, and S. Jung, “Inference of Gene Regulatory Networks Using TimeSeries Data: A Survey”, Curr Genomics. 10(6): 416–429 (2009).
 [6] J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “Complex networks in climate dynamics”, Eur. Phys. J. Spec. Top. 174: 157 (2009).
 [7] W. L. Ku, G. Duggal, Y. Li, M. Girvan, and E. Ott, “Interpreting Patterns of Gene Expression: Signatures of Coregulation, the Data Processing Inequality, and Triplet Motifs,” PLoS One 7, e31969 (2012).
 [8] J. Ren, W.X. Wang, B. Li, and Y.C. Lai, “Noise Bridges Dynamical Correlation and Topology in Coupled Oscillator Networks”, Phys. Rev. Lett. 104, 058701 (2010).
 [9] Z. Levnajic and A. Pikovsky, “Untangling complex dynamical systems via derivativevariable correlations”, Sci. Rep. 4, 5030 (2014); M. G. Leguia, R. G. Andrzejak, and Z. Levnajic, “Evolutionary optimization of network reconstruction from derivativevariable correlations”, J. Phys. A: Math. Theor. 50, 334001 (2017).
 [10] T. Schreiber, “Measuring Information Transfer,” Phys. Rev. Lett. 85, 461464.
 [11] J. Sun, and E. M. Bollt, “Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings”, Physica D 267, 4957 (2014).
 [12] E. J. Molinelli, A. Korkut, W. Wang, M. L. Miller, N. P. Gauthier, X. Jing, P. Kaushik, Q. He, G. Mills, D. B. Solit, C. A. Pratilas, M. Weigt, A. Braunstein, A. Pagnani, R. Zecchina, and C. Sander, “Perturbation Biology: Inferring Signaling Networks in Cellular Systems”, PLoS Comput Biol 9 (12): e1003290 (2013).
 [13] M. Timme, “Revealing Network Connectivity from Response Dynamics”, M. Timme, Phys. Rev. Lett. 98, 224101 (2007).

[14]
M. J. Panaggio, M.V. Ciocanel, L. Lazarus, C. M. Topaz, and B. Xu, “Model Reconstruction from Temporal Data for
Coupled Oscillator Networks,”
arXiv:
1905.01408v1, 4 May 2019.  [15] M. G. Leguia, C. G. B. Martinez, I. Malvestio, A. T. Campo, R. Rocamora, Z. Levnajic, and R. G. Andrzejak, “Inferring directed networks using a rankbased connectivity measure”, Phys. Rev. E 99, 012319 (2019).
 [16] T. Stankovski, T. Pereira, P. V. E. McClintock, A. Stefanovska, “Coupling functions: Universal insights into dynamical interaction mechanisms ‘’, Rev. Mod. Phys. 89, 045001 (2017).
 [17] S. G. Shandilya and M. Timme, “Inferring network topology from complex dynamics”, New J. Phys. 13, 13004 (2011).
 [18] S. Leng, Z. Xu, and H. Ma, “Reconstructing directional causal networks with random forest: Causality meeting machine learning”, Chaos 29, 093130 (2019).
 [19] R.M. Cao, S.Y. Liu, and X.K. Xua, “Network embedding for link prediction: The pitfall and improvement”, Chaos 29, 103102 (2019).
 [20] M. G. Leguia, Z. Levnajic, L. Todorovski, and B. Zenko, “Reconstructing dynamical networks via feature ranking”, Chaos 29, 093107 (2019).
 [21] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication,” Science 304, 7880 (2004).
 [22] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “ModelFree Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach,” Phys. Rev. Lett. 120, 024102 (2018).
 [23] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, “Reservoir Observers: ModelFree Inference of Unmeasured Variables in Chaotic Systems,” Chaos 27, 041102 (2017).
 [24] L. Larger, A. BaylonFuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and M. Jacquot, “HighSpeed Photonic Reservoir Computing Using a TimeDelayBased Architecture: Million Words per Second Classification”, Phys. Rev. X 7, 011015 (2017).
 [25] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout, “Compact hardware liquid state machines on FPGA for realtime speech recognition”, Neural Networks 21, 511523 (2008).
 [26] L. M. Pecora and T. L. Carroll, “Master Stability Function for Synchronized Chaotic Systems,” Phys. Rev. Lett. 80, 2109 (1998).

[27]
H. Jaeger, “The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks,” GMO Report 148, German National Research Center for Information Technology (2001).
 [28] W. Maass, T. Natschlager, and H. Markham, “RealTime Computing without Stable States: A New Framework for Neural Computation Based on Perturbations,” Neural Computation 14, 25312560 (2002).
 [29] M. Lukoševičius and H. Jaeger, “Reservoir Computer Approaches to Recurrent Neural Network Training,” Computer Science Review 3, 127149 (2009).
 [30] P. Antonik, M. Gulina, J. Pauwels, and S. Massar, “Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography,” Phys. Rev. E 98, 012215 (2018).
 [31] P. Antonik, M. Haelterman, and S. Massar, “BrainInspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems,” Phys. Rev. Applied 7, 054014 (2017).
 [32] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H.D.T. Abarbanel, “Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems,” Phys. Rev. E 51, 980994 (1995).
 [33] L. Kocarev and U. Parlitz, “Generalized Synchronization, Predictability, and Equivalence of Unidirectionally Coupled Dynamical Systems,” Phys. Rev. Lett. 76, 18161819 (1996).
 [34] B. R. Hunt, E. Ott, and J. A. Yorke, “Differentiable Generalized Synchronization of Chaos,” Phys. Rev. E 55, 40294034 (1997).

[35]
A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation for Nonorthogonal Problems,” Technometrics
12, 5567 (1970).  [36] R. Penrose, “A Generalized Inverse for Matrices,” Proc. Cambridge Philosophical Soc. 51, 406413 (1955).
 [37] L. Appeltant, M. C. Soriano, G. van der Sande, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information Processing Using a Single Dynamical Node as a Complex System,” Nature Communications 2, 468473 (2013).
 [38] L. Gordon and J.P. Ortega, “Reservoir Computing Universality with Stochastic Inputs,” IEEE Trans. on Neural Networks and Learning Systems 23 (2019).
 [39] E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130 (1963).

[40]
H. D. Nguyen, and G. J. McLachlan, “Maximum likelihood estimation of Gaussian mixture models without matrix operations.”, Adv. Data. Anal. Classif.
9:371–394 (2015).  [41] J. L. Kaplan and J. A. Yorke, “Chaotic Behavior of Multidimensional Difference Equations,” in Functional Differential Equations and Approximations of Fixed Points, pp. 204227 (Springer, Heidelberg, 1979).
 [42] J. D. Farmer, E. Ott, and J. A. Yorke, “The Dimension of Chaotic Attractors,” Physica D 7, 153180 (1983).
Comments
There are no comments yet.