Using Generative Adversarial Nets on Atari Games for Feature Extraction in Deep Reinforcement Learning

04/06/2020
by   Ayberk Aydın, et al.
7

Deep Reinforcement Learning (DRL) has been successfully applied in several research domains such as robot navigation and automated video game playing. However, these methods require excessive computation and interaction with the environment, so enhancements on sample efficiency are required. The main reason for this requirement is that sparse and delayed rewards do not provide an effective supervision for representation learning of deep neural networks. In this study, Proximal Policy Optimization (PPO) algorithm is augmented with Generative Adversarial Networks (GANs) to increase the sample efficiency by enforcing the network to learn efficient representations without depending on sparse and delayed rewards as supervision. The results show that an increased performance can be obtained by jointly training a DRL agent with a GAN discriminator. —- Derin Pekistirmeli Ogrenme, robot navigasyonu ve otomatiklestirilmis video oyunu oynama gibi arastirma alanlarinda basariyla uygulanmaktadir. Ancak, kullanilan yontemler ortam ile fazla miktarda etkilesim ve hesaplama gerektirmekte ve bu nedenle de ornek verimliligi yonunden iyilestirmelere ihtiyac duyulmaktadir. Bu gereksinimin en onemli nedeni, gecikmeli ve seyrek odul sinyallerinin derin yapay sinir aglarinin etkili betimlemeler ogrenebilmesi icin yeterli bir denetim saglayamamasidir. Bu calismada, Proksimal Politika Optimizasyonu algoritmasi Uretici Cekismeli Aglar (UCA) ile desteklenerek derin yapay sinir aglarinin seyrek ve gecikmeli odul sinyallerine bagimli olmaksizin etkili betimlemeler ogrenmesi tesvik edilmektedir. Elde edilen sonuclar onerilen algoritmanin ornek verimliliginde artis elde ettigini gostermektedir.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset