Using deep learning to construct stochastic local search SAT solvers with performance bounds

09/20/2023
by   Maximilian Kramer, et al.
0

The Boolean Satisfiability problem (SAT) is the most prototypical NP-complete problem and of great practical relevance. One important class of solvers for this problem are stochastic local search (SLS) algorithms that iteratively and randomly update a candidate assignment. Recent breakthrough results in theoretical computer science have established sufficient conditions under which SLS solvers are guaranteed to efficiently solve a SAT instance, provided they have access to suitable "oracles" that provide samples from an instance-specific distribution, exploiting an instance's local structure. Motivated by these results and the well established ability of neural networks to learn common structure in large datasets, in this work, we train oracles using Graph Neural Networks and evaluate them on two SLS solvers on random SAT instances of varying difficulty. We find that access to GNN-based oracles significantly boosts the performance of both solvers, allowing them, on average, to solve 17 between clauses and variables), and to do so in 35 improvements in the median number of steps of up to a factor of 8. As such, this work bridges formal results from theoretical computer science and practically motivated research on deep learning for constraint satisfaction problems and establishes the promise of purpose-trained SAT solvers with performance guarantees.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
01/26/2020

NLocalSAT: Boosting Local Search with Solution Prediction

The boolean satisfiability problem is a famous NP-complete problem in co...
research
11/26/2010

Evolving difficult SAT instances thanks to local search

We propose to use local search algorithms to produce SAT instances which...
research
03/02/2011

Decentralized Constraint Satisfaction

We show that several important resource allocation problems in wireless ...
research
10/24/2022

Towards an Understanding of Long-Tailed Runtimes of SLS Algorithms

The satisfiability problem is one of the most famous problems in compute...
research
05/07/2020

On the Effect of Learned Clauses on Stochastic Local Search

There are two competing paradigms in successful SAT solvers: Conflict-dr...
research
09/04/2020

Hybrid DCOP Solvers: Boosting Performance of Local Search Algorithms

We propose a novel method for expediting both symmetric and asymmetric D...
research
07/01/2021

Evidence for Long-Tails in SLS Algorithms

Stochastic local search (SLS) is a successful paradigm for solving the s...

Please sign up or login with your details

Forgot password? Click here to reset